CONTENTS

Introduction to Davis: p3

MASTER’S PROGRAM IN STATISTICS: p6
Data Science Track: p7

PH.D. PROGRAM IN STATISTICS: p10
Biostatistics Track: p16

List of STATISTICS COURSES: p17
Special Regulations: p18

FINANCIAL SUPPORT: p20
FEES and fee remissions: p21

FACULTY of the Graduate Program in Statistics: p22
Graduate Program Committees: p25

STAFF: p26
Department Map: p27
History of the Department: p28
Code of ACADEMIC CONDUCT: p31-32
Academic Calendar: p33
INTRODUCTION TO DAVIS

The University of California has ten campuses, of which Davis is the third largest. The campus started as an agricultural school (first admitting students in 1908) and later established the School of Veterinary Medicine. It became a general campus in 1959. Since that time, the campus has expanded to over 35,400 students, with undergraduate and graduate programs in many fields, and the professional schools of law, management, medicine and veterinary medicine. Despite the size of the campus, it has retained many of the attributes of a small college, with an informal atmosphere and excellent student-faculty interaction.

The city of Davis has been called the most “energy-conscious” city in the United States. It is an interesting, forward-looking city of about 65,600 located in California’s Central Valley. It lies 15 miles west of Sacramento, the State capital, and 75 miles northeast of San Francisco. Davis residents can take advantage of the recreational opportunities of Lake Tahoe, Northern Sierra Nevada, Napa Valley, and the beaches of northern California.

DEPARTMENT OF STATISTICS AND GRADUATE PROGRAM IN STATISTICS

The Department of Statistics is located in the Division of Mathematical and Physical Sciences in the College of Letters and Science at UC Davis. The department has sixteen full-time senate faculty members and one federation faculty member, and there are usually several visiting faculty and lecturers. The research interests of the faculty cover a broad spectrum, and include applied statistics, theoretical statistics and biostatistics. Faculty interests extend to a variety of other disciplines such as medicine, biology, environmental science, transportation, engineering, computer science, epidemiology, psychology, social science, demography and reliability. For more details on research, view the faculty home pages and research profile pages, which can be reached, via the Statistics web site, at http://www.stat.ucdavis.edu.
The Graduate Program in Statistics consists of twenty-five faculty including members affiliated with various departments on campus. The graduate programs in statistics are based on the premise that good applications are built on strong foundations in theory and methods. Thus, the core program for every graduate student in statistics includes graduate level core courses in mathematical statistics, applied statistics and multivariate analysis. Students obtain training in computational statistics and can choose from a variety of special topics courses.

Statistics is a subject area of remarkable breadth and diversity. While research problems in statistics often have fascinating mathematical aspects, the beauty of the subject lies in its wide applicability. Research in statistics often addresses a problem of data analysis or data interpretation, motivated from real applications in agriculture, engineering, environmental, biological, medical or social sciences. A complete solution to such a problem typically includes statistical modeling, large sample mathematical analysis and computer work for implementing the method, often also a Monte Carlo study and asymptotic analysis. The interplay of theory and application within the field of statistics suggests that advanced training in the subject should be broadly based.

Each graduate student is assigned a graduate Advisor who will help design a program that is consistent with two important goals: (1) broad training in statistical theory, methods and data analysis, and (2) specialized training in the area(s) of application of particular interest. New and continuing students will consult with the graduate Advisor at least once per year before the start of classes to discuss their proposed program and coursework. Advanced coursework in applied fields such as ecology, econometrics, engineering or genetics may serve as elective breadth courses within the M.S. or Ph.D. programs. A Ph.D. program in Statistics: Biostatistics Track is also offered. Students in the Biostatistics Track obtain a solid background in mathematical statistics and at the same time acquire comprehensive skills in modern biostatistical methods, data analysis and applications.

THE STATISTICAL LABORATORY
The “Stat Lab” is a center for statistical consultation and collaborative research. Hundreds of campus researchers consult the laboratory staff each year concerning statistical aspects of their research. Ph.D. students in statistics are required to do consulting in conjunction with the Statistical Laboratory for at least one quarter, in the form of the STA 260 (Statistical Practice and Data Analysis) course. The opportunity to work with researchers in other fields and to assist in planning and analyzing their experiments or surveys is a valuable educational experience that plays a key
role in the student’s development as a mature researcher and collaborator on interdisciplinary research projects.
Website: http://www.stat.ucdavis.edu/stats-lab/services

COMPUTING SERVICES
The Department of Statistics maintains a Graduate Student Computing Laboratory with many Pentium 4 desktops, laser printers, scanners and copiers. The Department also operates a cluster of HP/Compaq DS10 Alpha servers, in addition to several Windows based domain controllers, file servers and backup servers. Several well equipped laptop computers are provided to faculty and students for presentations and classroom instructional use. Wireless networking services are also available. Standard software includes S+, R, SAS, Matlab and Minitab.

Campus Computing Services provides the campus with batch, interactive timesharing, and remote job entry mainframe computing. Many microcomputers and scientific workstations are provided for student use at no charge. There are over 300 terminals and microcomputers located throughout the campus, including a SUN Workstation Lab with 29 SUN 3/40 workstations, and a Graphics Workstation Lab with 6 DEC Station 5000s, 3 Silicon Graphics color workstations, and 4 NCD color X display stations.

Further Information
For more details on course syllabi, see http://registrar.ucdavis.edu/UCDWebCatalog/. For details on classrooms and schedules, see http://registrar.ucdavis.edu/csrg/. For general regulations by Graduate Studies regarding exams, forms, etc. see http://gradstudies.ucdavis.edu/. Regarding information for international students see http://siss.ucdavis.edu/.
ADMISSIONS REQUIREMENTS
An undergraduate major in mathematics or statistics is typical for statistics graduate students, but is not required. However, because of the mathematical nature of some of the graduate coursework, students should be able to demonstrate good mathematical ability. The applicant must complete the Office of Graduate Studies online application, with fee, by the stated deadline and include: one official transcript for each school attended, three letters of recommendation, and GRE scores taken within the last 5 years. TOEFL or IELTS scores are also required if the applicant’s native language is not English. The program does not accept part-time students.

Prerequisites: The prerequisites for entrance into the master’s program are as follows: a bachelor’s degree with 3.0 overall grade-point average; one year of calculus; a course in linear algebra; facility with a programming language; and upper-division work in mathematics and/or statistics. Deficiencies: Students admitted with deficiencies must make up the coursework within the first academic year, and must achieve a grade of at least a B in each course.

PROGRAM OF STUDY
The program of study will be developed and approved for each student by the Graduate Advisor in consultation with the student. This is a M.S. Plan II program (no thesis). A minimum of 44 units is required (of which at least 18 must be at the graduate level, according to university regulations). A comprehensive final examination in the major subject is required of each candidate. No thesis is required.

COURSE REQUIREMENTS
Standard Track - 44 units total
Core courses: (total 32 units)
- STA 200A Introduction to Probability Theory
- STA 200B-200C Introduction to Mathematical Stats (4 units each)
- STA 135 Multivariate Data Analysis (4 units)
- STA 206, 207, 208 Statistical Methods & Research (4 units each)
One of the following two courses:
- STA 242 Introduction to Statistical Programming (4 units), or
- STA 243 Computational Statistics (4 units)
Elective courses: (total 12 units)
At least three courses selected from

- STA 137 Time Series Analysis (4 units)
- STA 138 Analysing Categorical Data (4 units)
- STA 141B Data & Web Technologies for Data Analysis (4 units)
- STA 141C Big Data & High Performance Stat Computing (4 units)
- STA 142 Reliability (4 units)
- STA 144 Sampling Theory of Surveys (4 units)
- STA 145 Bayesian statistical Inference (4 units)
- STA 260 Statistical Practice and Data Analysis (3 units)

or any four-unit letter grade graduate level course in Statistics.

The following courses can be used as substitutes:

- For students who enter the graduate program as Ph.D. students, successful completion of STA 232ABC substitutes for STA 206, 207, 208 as a requirement for the M.S. degree.
- With the permission of the Graduate Advisor, an internship coupled with STA 299 can substitute for an elective course.

Emphasis in Data Science Track - 48 units total

Core courses: (total 36 units)

- STA 135 Multivariate Data Analysis (4 units)
- STA 200A Introduction to Probability Theory
- STA 200B Introduction to Mathematical Stats (4 units)
- STA 141A Fundamentals of Statistical Data Science (4 units)
- STA 206, 207, 208 Statistical Methods & Research (4 units each)
- STA 209 Optimization for Big Data Analytics (4 units)

One of the following two courses:

- STA 242 Introduction to Statistical Programming (4 units), or
- STA 243 Computational Statistics (4 units)

Elective courses: (total 12 units)
At least one course selected from:

- STA 137 Time Series Analysis (4 units)
- STA 138 Analysing Categorical Data (4 units)
- STA 141B Data & Web Technologies for Data Analysis (4 units)
- STA 141C Big Data & High Performance Stat Computing (4 units)
- STA 142 Reliability (4 units)
- STA 144 Sampling Theory of Surveys (4 units)
- STA 145 Bayesian statistical Inference (4 units)
- STA 260 Statistical Practice and Data Analysis (3 units)

or any four-unit letter grade graduate level course in Statistics.

(continued on next page)
Elective courses continued
At least one course selected from:
 ECS 122A, B Algorithm Design and Analysis (4 units each)
 ECS 165A, B Database Systems (4 units each)
 ECS 170 Artificial Intelligence (4 units)
 ECS 171 Machine Learning (4 units)
 ECS 289G Special Topics in Computer Science (4 units)
A third elective course taken from Mathematics, Computer Science, or related disciplines (with approval of the Graduate Advisor). (4 units)

Summary:
Full-time students must enroll for 12 units per quarter including research, academic and seminar units. Courses that fulfill any of the program course requirements may not be taken S/U unless the course is normally graded S/U. Once course requirements are completed, students can take additional classes as needed, although the 12 units per quarter are generally fulfilled with a research class (299) and perhaps seminars, or additional electives, approved by one of the Graduate Advisors. Per UC regulations, students should not ordinarily enroll in more than 12 units of graduate level courses (200) or more than 16 units of combined undergraduates and graduate level (100, 200, 300) courses per quarter.

Standard Track: 32 units of core coursework and 12 units of electives are required for a total of 44 units.

Emphasis in Data Science Track: 36 units of core coursework and 12 units of electives are required for a total of 48 units.

COMMITTEES
ADMISSIONS COMMITTEE: Once applications and relevant materials are submitted to the program, they are reviewed by the admissions committee, which consists of four or five faculty members. Once a decision has been made to admit or deny an applicant, the admissions chair forwards the committee’s recommendation to the Dean of Graduate Studies for approval. The priority application deadline for entry in Fall of the next academic year is January 15; applications are accepted through March 1.

COMPREHENSIVE EXAMINATION COMMITTEE: The Chair of the Graduate Program in Statistics (GPS) will appoint an examination committee that will be responsible for preparing, administering and grading the examination. The same exam will be given to the students simultaneously. This committee will also make the final decision on each student. If the committee does not reach a decision on a student, the GPS executive committee will be responsible for making the pass-no pass decision.
ADVISING COMMITTEE: There are four faculty members of the advising committee for the Master's program, chaired by the Master Graduate Advisor, appointed by the program chair and approved by the Dean of Graduate Studies.

ADVISING & MENTORING
The Master Graduate Advisor assists M.S. students in developing a study plan, and has signatory authority for the Master's program. A copy of the Statistics Mentoring Guidelines can be found at http://anson.ucdavis.edu/mentor.pdf.

ADVANCEMENT TO CANDIDACY
Plan II M.S. Candidates must file an Advancement to Candidacy form (http://www.gradstudies.ucdavis.edu/forms) after completing one-half of their course requirements for their degree requirements (18 units) and at least one quarter before completing all their degree requirements.

M.S. COMPREHENSIVE EXAMINATION
Every M.S. Plan II student needs to pass a comprehensive exam, to continue in the program. The M.S. Comprehensive Examination is a written examination. The examination may include the use of statistical software and may be offered in a computer lab. The examination is taken at the end of the Winter quarter (during Spring Break) upon completion of STA 206 and STA 207. If a student does not attempt the examination upon completion of those courses it will be counted as not passing the comprehensive exam.

Should a student not pass the written comprehensive exam, the student will be offered a second comprehensive examination in the Spring quarter following the first attempt. If a student does not attempt the second comprehensive exam, it will be counted as a failure.

Failure to pass the comprehensive exam at the second attempt will result in a recommendation to the Dean of Graduate Studies for disqualification of the student from the graduate program.

For students who entered the graduate program as Ph.D. students but subsequently change their degree objective to the M.S. program, passing the STA 232AB part of the program's pre-qualifying Ph.D. written exam is considered as passing the comprehensive exam.
PELP, IN ABSENTIA & FILING FEE STATUS
Information about PELP (Planned Educational Leave), In Absentia (reduced fees when researching out of state), and Filing Fee status can be found in the Graduate Student Guide: http://www.gradstudies.ucdavis.edu/publications/

TYPICAL TIME LINE AND SEQUENCE OF EVENTS
The normative time to degree in the Statistics M.S. program is four to five quarters. Graduate Students must be enrolled in a minimum of 12 units every quarter. These 12 units can be made up of both required courses and 299 variable unit courses.

The following would be a typical program.

Year 1:
Fall Winter Spring
STA 200A STA 200B STA 200C
STA 206 STA 207 STA 208
Elective STA 135 STA 243
M.S. Comprehensive Exam

Year 2:
Fall
Electives/internship (12 units)

In the two-year program, the first year would include more undergraduate level preparatory courses, while the second year students would take the graduate level series. The following would be a typical program for a student requiring two years.

Year 1:
Fall Winter Spring
STA 106 STA 108 STA 200C
STA 200A STA 200B Elective
STA 141A STA 135 Elective

Year 2:
Fall Winter Spring
STA 206 STA 207 STA 208
Elective Elective STA 243
Elective Elective Elective
M.S. Comprehensive Exam

Please note that once all requirements for the Statistics M.S. degree are completed, students are required to graduate.
THE Ph.D. PROGRAM IN STATISTICS
http://www.stat.ucdavis.edu/grad/phd

ADMISSIONS REQUIREMENTS
An undergraduate major in mathematics or statistics is typical for statistics graduate students, but is not required. However, because of the mathematical nature of some of the graduate coursework, students should be able to demonstrate good mathematical ability.
The minimal background for entrance into the master's program is: a bachelor’s degree with 3.0 overall grade-point average; facility with a programming language; and upper division work in mathematics and/or statistics; at least one semester or two quarters of advanced calculus at a level equivalent to MAT 25 and MAT 125A; and a quarter of linear algebra at a level equivalent to MAT 67. The program does not accept part-time students.

PROGRAM OF STUDY
This degree is offered under Plan A which specifies a five member (minimum) dissertation/final examination committee and a final oral examination (defense of the dissertation).

A Ph.D. student will select an area of specialization and will choose a major dissertation advisor from Graduate Program in Statistics (GPS) faculty working in that area, usually in the second or third year of study. The student's program of study will be developed by the student jointly with the Graduate Advisor.

COURSE REQUIREMENTS (52 UNITS)

Required courses (34 units total):
STA231 A, B, C (4 units each) STA 260 (3 units)
STA232 A, B, C (4 units each) STA290 (1 unit) for three quarters
STA 242 or 243 (4 units) STA390 (2 units)

Elective courses (18 units total):
In addition, five elective graduate-level courses (at least 18 units total), out of which at least four must be from Statistics, from the following list of potential elective courses:
- STA 222, Survival Analysis (4 units)
- STA 223, Generalized Linear Models (4 units)
- STA 224, Analysis of Longitudinal Data (4 units)
- STA 225, Clinical Trials (4 units)
STA 226, Statistical Methods for Bioinformatics (4 units)
STA 235A-235B-235C, Probability Theory (4 units each)
STA 237A-237B, Time Series Analysis (4 units each)
STA 250, Topics in Applied and Computational Statistics (4 units)
STA 251, Topics in Statistical Methods and Models (4 units)
STA 252, Advanced Topics in Biostatistics (4 units)

Please note that other graduate STA courses (STA 200ABC, STA 201, STA 206-207-208 for example) may not be used to satisfy the graduate elective requirement for the Ph.D. degree. If you have any questions please ask the Graduate Advisor or the graduate program coordinator.

Summary:
All coursework (a total of at least 52 units) and the program of study must be approved by the Graduate Advisor.

THE BIOSTATISTICS TRACK
The Graduate Program in Statistics offers the program Ph.D. in Statistics: Biostatistics Track as a subspecialty. For more information see page 16

COMMITTEES
ADMISSIONS COMMITTEE: once applications and relevant materials are submitted to the program they are reviewed by the admissions committee, which consists of four to five faculty members. Once a decision has been made to admit or deny an applicant, the admissions committee chair forwards the committee's recommendation to the Dean of Graduate Studies for approval. The application and fellowships deadline for entry in Fall of the next year is January 15.

ADVISING COMMITTEE: there are four faculty members of the advising committee, chaired by the Master Graduate Advisor. The Master Graduate Advisor is identified the Chair of the program from the list of appointed Graduate Advisors, assists graduate students in developing a study plan, and has signatory authority for the Master's and Ph.D. programs.

QUALIFYING EXAMINATION COMMITTEE: the examining committee will be appointed in accordance with the policies of the Graduate Council and Office of Graduate Studies at the recommendation of the Graduate Advisor who consults with the student prior to making the recommendation. The major professor is not eligible to serve as chair of the examining committee.

DISSERTATION COMMITTEE: the student, in consultation with their major
professor, nominates five qualified faculty members to serve on the Dissertation Committee. These nominations are submitted to the Office of Graduate Studies for formal appointment in accordance with Graduate Council Policy (DDB 80. Graduate Council B.1.). The major professor serves as Chair of the committee.

ADVISING STRUCTURE AND MENTORING
The major professor is the faculty member who supervises the research and dissertation; this person serves as the Chair of the Dissertation Committee. The Master Graduate Advisor is identified by the chair of the program from among the appointed Graduate Advisors, assists graduate students in developing a study plan, and has signatory authority for the Master's and Ph.D. programs. A copy of the Statistics Mentoring Guidelines can be found at http://anson.ucdavis.edu/mentor.pdf.

ADVANCEMENT TO CANDIDACY
The student is eligible for advancement to Candidacy for the Ph.D. degree upon completion of all course requirements and after passing the Ph.D. Qualifying Examination, normally in the fifth quarter.

EXAMINATION AND DISSERTATION REQUIREMENTS

Ph.D. Pre-qualifying Written Examination
The Ph.D. Pre-qualifying Written Examination will be given at the beginning of each Spring Quarter and also at the beginning of each Fall Quarter. Students in the Ph.D. program must attempt the exam in the Spring Quarter immediately after they complete both the STA 231AB and STA 232AB core course series. If a student does not attempt the examination at this time, it will be recorded as a ‘no pass’. Every Ph.D. student needs to pass the examination in a maximum of two attempts. In case of not pass at the first attempt, the second attempt must take place at the next time the examination is offered, and if a student does not attempt the exam at that time, it will be counted as a failure. Two ‘not passes’ of the examination will result in a recommendation to the Dean of Graduate Studies for discontinuation of the student in the Ph.D. program.

The Ph.D. Pre-qualifying Written Examination is a written exam with two separate parts: a theoretical part and an applied part. The duration of each part is about 3-4 hours. The applied part may be offered in a computer lab and may include the use of statistical software. If at the first attempt one part is passed but the other is not, only the part which was not passed must be repeated at the next attempt.

The Chair of the Graduate Program in Statistics (GPS) will appoint an ex-
amination committee that will be responsible for preparing, administering and grading the examination. This committee will forward its recommendation to the GPS, which will make the final decision on each student.

Ph.D. Qualifying Examination
The Ph.D. Qualifying Examination (QE) is an oral exam whose purpose is to determine if the student is capable of independent research. The QE will be composed of a forty-five minute presentation given by the student and is followed by a question period which covers a special research topic as well as coursework in general. A student who passes the QE is eligible for advancement to candidacy for the Ph.D. degree. The QE is expected to be attempted within one year from the quarter in which the student passes the Ph.D. Pre-qualifying Written Examination, but no later than the end of the student’s third year of the Ph.D. program. In consultation with the Dissertation Adviser, the student will submit to the Graduate Advising Committee (GAC) a date for the exam and a dissertation proposal.

1. The dissertation proposal should be between three and five pages in length and should contain an outline of the general context of the thesis research, a description of the special problem(s) to be addressed, and an indication of the methods and techniques to be used.

2. A draft version of the proposal must be submitted to the GAC for the purpose of determination of the composition of the QE committee at least 6 weeks before the proposed date of the exam. The student must submit a final version of the proposal to the QE committee a week before the exam date.

3. Based on the proposal, the GAC will recommend the appointment of a committee of five examiners to Graduate Studies (in consultation with the student and the student’s Dissertation Adviser). Normally the exam committee will be composed of four members from the Department of Statistics. Per Graduate Council guidelines, at least one member must be external to the Graduate Program in Statistics. The student’s intended Dissertation Adviser (and/or co-adviser) is not eligible to serve on the Qualifying Examination committee.

A student who passes the Ph.D. Qualifying Examination is eligible for Advancement to Candidacy for the Ph.D. degree. The student must file the appropriate paperwork with the Office of Graduate Studies and pay the candidacy fee to be promoted to Candidacy for the Ph.D. degree.

Final Examination
Defense of the dissertation before the dissertation committee will constitute the final examination for the Ph.D. degree. The final examination must be
passed within four years after promotion to Candidacy, unless a special exception is granted. Pass or no pass is determined by a vote of the dissertation committee. The title and abstract of the Ph.D. Defense presentation must be submitted to the graduate program coordinator one week ahead of the defense. This will be distributed to all faculty and students of the Graduate Program in Statistics, who are invited to attend the presentation portion of the examination. The subsequent question period is a closed session between the student and the committee.

Dissertation
The doctoral dissertation is an essential part of the Ph.D. program. A topic will be selected by the student, under the advice and guidance of a major professor (thesis adviser) and the dissertation committee chaired by the major professor. Students are encouraged to begin some research activity as early as possible during the second year of their graduate studies. The dissertation must contain an original contribution of publishable quality to the knowledge of statistics that may expand the theory or methodology of statistics, or expand or modify statistical methods to solve a critical problem in applied disciplines. Acceptance of the dissertation by three designated members of the dissertation committee follows Graduate Studies guidelines (Plan A with defense). The dissertation must be completed and submitted to the dissertation committee prior to taking the final examination. Students should be guided on matters of style by the chair and members of the thesis/dissertation committee. Graduate Studies is not concerned with the form of the bibliography, appendix, footnotes, etc. as long as they are done in some acceptable, consistent and recognized manner approved by your committee. (See https://grad.ucdavis.edu/current-students/academic-services-information/filing-thesis-or-dissertation)

TYPICAL TIME LINE AND SEQUENCE OF EVENTS
The normative time to degree is four to five years. Every full-time student at UC Davis is required to take a minimum of 12 units of coursework per quarter. Students will generally take additional electives later on, in consultation with their major professor. The following track will be a typical program for a well-prepared student seeking a Ph.D. degree.

Year 1:

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>STA 231A</td>
<td>STA 231B</td>
<td>STA 231C</td>
</tr>
<tr>
<td>STA 232A</td>
<td>STA 232B</td>
<td>STA 232C</td>
</tr>
<tr>
<td>STA 290</td>
<td>Statistics Elective</td>
<td>STA 260</td>
</tr>
<tr>
<td>STA 390</td>
<td>STA 290</td>
<td>Ph.D. Written Exam</td>
</tr>
</tbody>
</table>
Year 2:
Fall Winter Spring
Statistics Elective STA 242 Research
Statistics Elective STA 299 STA 260
Statistics Elective Statistics Elective Ph.D. Qualifying Exam

Years 3, 4:
Complete requirements for the Ph.D. degree, including Dissertation and Defense

PELP, IN ABSENTIA, AND FILING FEE STATUS
Students requiring time away from the program can opt to go on PELP. Please note students cannot go on PELP for research purposes. Full information about PELP, In Absentia, and Filing Fee status can be found in the Graduate Student Guide:
http://www.gradstudies.ucdavis.edu/publications/

LEAVING THE PROGRAM PRIOR TO COMPLETION
Should a student leave the program prior to completing the requirements for the PhD, they may still be eligible to receive the masters if they have fulfilled all the requirements for that degree (see masters requirements). Passing the PhD pre-qualifying written exam is considered as passing the MS comprehensive exam. Students may use the Change of Degree Objective form available from the Registrar’s Office: http://registrar.ucdavis.edu/PDFFiles/D065PetitionForChangeOfGraduateMajor.pdf

COMPLETING THE PROGRAM
Once a student has completed the dissertation and passed the final examination, they must file the dissertation online and arrange an appointment with the student affairs officer at the Office of Graduate Studies, to which the student must bring the original Plan A Exam Report Form, the Program Exit Form, the original signed dissertation title page and copies of the abstracts, along with any other relevant forms that are requested. Once this meeting has taken place, the student has officially completed the program. Please see the academic calendar on page 30 for all of the deadlines. Official diplomas are usually given a few months after the degree date. Full information about the completion process can be found on the Graduate Studies website: http://gradstudies.ucdavis.edu/students/filing.html
THE Ph.D. PROGRAM IN STATISTICS:
BIOSTATISTICS TRACK
http://www.stat.ucdavis.edu/grad/biostatistics_track

The Graduate Program in Statistics offers the program Ph.D. in Statistics: Biostatistics Track as a subspecialty. Biostatistics may be understood as the application of statistical methods in the biological, medical, agricultural and environmental sciences, as well as the study of statistical methodology concerning problems and statistical areas originating from such scientific fields. This subspecialty builds on the strong, diverse Statistics program and the UC Davis environment of highly regarded programs in Biological Sciences, Veterinary Medicine, and Agricultural and Environmental Sciences, as well as the School of Medicine. The collective research interests of the GPS faculty include a broad range of topics in Biostatistics.

Students who wish to enroll in the Biostatistics track are encouraged to do so as early as possible. Enrollment may be declared anytime prior to the Ph.D. Qualifying Exam. On the Ph.D. diploma, transcripts and the first title page of the Ph.D. thesis, the program will still be denoted as “Statistics”. Completion of this program will be recognized by a letter from the GPS Chair, stating that the student has completed all requirements of the Biostatistics track.

Admissions requirements are the same as for the Ph.D. program, as are dissertation and examination requirements; coursework requirements are as follows:

PROGRAM OF STUDY

A Ph.D. student in this program will select an area of specialization within Biostatistics and will choose a dissertation advisor from GPS faculty working in Biostatistics, usually in the second or third year of study. The student's program of study will be developed by the student jointly with the Graduate Advisor.

Required Courses (46 units):
STA 231 A, B, C (4 units each) STA 290 (1 unit) for three Quarters
STA 232 A, B, C (4 units each) STA 390 (2 units)
STA 222 (4 units) STA 260 (3 units)
STA 223 (4 units) STA 242 or 243 (4 units)
STA 224 (4 units)

In addition, one life sciences course (non-quantitative biology course) at the upper division or graduate level (4 units) and one elective graduate course from Statistics or Biostatistics (at least 3 units). All coursework (a total of at least 53 units) and the program of study must be approved by the Graduate Advisor.
Statistics Courses

Lower Division Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Statistical Thinking</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>Introduction to Discrete Probability</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Elementary Statistics</td>
<td>4</td>
</tr>
<tr>
<td>13V</td>
<td>Elementary Statistics (Web Based)</td>
<td>4</td>
</tr>
<tr>
<td>32</td>
<td>Basic Statistical Analysis Through Computers</td>
<td>3</td>
</tr>
<tr>
<td>90X</td>
<td>Seminar</td>
<td>1-2</td>
</tr>
<tr>
<td>98</td>
<td>Directed Study</td>
<td>1-5</td>
</tr>
<tr>
<td>99</td>
<td>Special Study for Undergraduates</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Upper Division Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Applied Statistics for Biological Sciences</td>
<td>4</td>
</tr>
<tr>
<td>102</td>
<td>Introduction to Probability Modeling and Statistical Inference</td>
<td>4</td>
</tr>
<tr>
<td>103</td>
<td>Applied Statistics for Business and Economics</td>
<td>4</td>
</tr>
<tr>
<td>104</td>
<td>Applied Statistical Methods: Nonparametric Statistics</td>
<td>4</td>
</tr>
<tr>
<td>106</td>
<td>Applied Statistical Methods: Analysis of Variance</td>
<td>4</td>
</tr>
<tr>
<td>108</td>
<td>Applied Statistical Methods: Regression Analysis</td>
<td>4</td>
</tr>
<tr>
<td>120</td>
<td>Probability and Random Variables for Engineers</td>
<td>4</td>
</tr>
<tr>
<td>130A-130B</td>
<td>Mathematical Statistics: A Brief Course</td>
<td>4,4</td>
</tr>
<tr>
<td>131A</td>
<td>Introduction to Probability Theory</td>
<td>4</td>
</tr>
<tr>
<td>131B-131C</td>
<td>Introduction to Mathematical Statistics</td>
<td>4,4</td>
</tr>
<tr>
<td>133</td>
<td>Mathematical Statistics for Economists</td>
<td>4</td>
</tr>
<tr>
<td>135</td>
<td>Multivariate Data Analysis</td>
<td>4</td>
</tr>
<tr>
<td>137</td>
<td>Applied Time Series Analysis</td>
<td>4</td>
</tr>
<tr>
<td>138</td>
<td>Analysis of Categorical Data</td>
<td>4</td>
</tr>
<tr>
<td>141</td>
<td>Statistical Computing</td>
<td>4</td>
</tr>
<tr>
<td>142</td>
<td>Reliability</td>
<td>4</td>
</tr>
<tr>
<td>144</td>
<td>Sampling Theory of Surveys</td>
<td>4</td>
</tr>
<tr>
<td>145</td>
<td>Bayesian Statistical Inference</td>
<td>4</td>
</tr>
<tr>
<td>190X</td>
<td>Seminar</td>
<td>1-2</td>
</tr>
<tr>
<td>192</td>
<td>Internship in Statistics</td>
<td>1-12</td>
</tr>
<tr>
<td>194H/194A-B</td>
<td>Special Studies for Honors Students</td>
<td>4,4</td>
</tr>
<tr>
<td>198</td>
<td>Directed Group Study</td>
<td>1-5</td>
</tr>
<tr>
<td>199</td>
<td>Special Study for Advanced Undergraduates</td>
<td>1-5</td>
</tr>
</tbody>
</table>

Graduate Level Courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>205</td>
<td>Statistical Methods for Research</td>
<td>4</td>
</tr>
<tr>
<td>222*</td>
<td>Biostatistics: Survival Analysis</td>
<td>4</td>
</tr>
<tr>
<td>223*</td>
<td>Biostatistics: Generalized Linear Models</td>
<td>4</td>
</tr>
<tr>
<td>224*</td>
<td>Analysis of Longitudinal Data</td>
<td>4</td>
</tr>
<tr>
<td>225</td>
<td>Clinical Trials</td>
<td>4</td>
</tr>
<tr>
<td>226</td>
<td>Statistical Methodology for Bioinformatics</td>
<td>4</td>
</tr>
<tr>
<td>231A-231B-231C</td>
<td>Mathematical Statistics</td>
<td>4,4,4</td>
</tr>
<tr>
<td>232A-232B-232C</td>
<td>Applied Statistics</td>
<td>4,4,4</td>
</tr>
<tr>
<td>233</td>
<td>Design of Experiments</td>
<td>3</td>
</tr>
<tr>
<td>235A-235B-235C**</td>
<td>Probability Theory</td>
<td>3,3,3</td>
</tr>
<tr>
<td>237A-237B</td>
<td>Time Series Analysis</td>
<td>4,4</td>
</tr>
<tr>
<td>238</td>
<td>Theory of Multivariate Analysis</td>
<td></td>
</tr>
<tr>
<td>240A-240B</td>
<td>Nonparametric Statistics</td>
<td>4,4</td>
</tr>
<tr>
<td>241</td>
<td>Asymptotic Theory of Statistics</td>
<td>4</td>
</tr>
<tr>
<td>242</td>
<td>Statistical Programming</td>
<td>4</td>
</tr>
<tr>
<td>243</td>
<td>Computational Statistics</td>
<td>4</td>
</tr>
<tr>
<td>250</td>
<td>Topics in Applied and Computational Statistics</td>
<td>4</td>
</tr>
<tr>
<td>251</td>
<td>Topics in Statistical Methods and Models</td>
<td>4</td>
</tr>
<tr>
<td>252*</td>
<td>Advanced Topics in Biostatistics</td>
<td>4</td>
</tr>
<tr>
<td>260</td>
<td>Statistical Practice and Data Analysis</td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>Orientation to Statistical Research</td>
<td>2</td>
</tr>
<tr>
<td>290*</td>
<td>Seminar in Statistics</td>
<td>1</td>
</tr>
<tr>
<td>298*</td>
<td>Group Study</td>
<td>1-5</td>
</tr>
<tr>
<td>299*</td>
<td>Special Study for Graduate Students</td>
<td>1-12</td>
</tr>
<tr>
<td>299D*</td>
<td>Dissertation Research</td>
<td>1-12</td>
</tr>
<tr>
<td>390</td>
<td>Methods of Teaching Statistics</td>
<td>2</td>
</tr>
<tr>
<td>401</td>
<td>Methods in Statistical Consulting</td>
<td>3</td>
</tr>
</tbody>
</table>

* course jointly listed with Biostatistics
** course jointly listed with Mathematics
SPECIAL REGULATIONS

For a list of available forms and policies, please visit:
http://www.stat.ucdavis.edu/grad/forms-policies

DOUBLE-MAJOR PROGRAM
Current UC Davis graduate students can apply to enter the M.S. program in Statistics as a Double Major during any quarter. To apply, you will need to submit transcripts, GRE scores, three letters of recommendation and a personal statement to the M.S. program coordinator by the published quarterly deadline - please see the Statistics website at http://www.stat.ucdavis.edu/grad/double-major-ms-admissions.html for full details. Applications are reviewed once per quarter by the admissions committee. If admitted, students should make an appointment with the MS graduate advisor to discuss their study plan. They must also complete a Double Major petition, to be signed by the graduate advisor of their present program, and then by the admissions chair for Statistics. This form is then submitted to the graduate program coordinator. There will, however, usually be no financial support available for such students.

Under a Graduate Council ruling, a student in a double major program may transfer up to 12 units from one program to another with the approval of the graduate advisor and the Dean of Graduate Studies. The student must spend a minimum of two quarters in regular graduate standing in the Statistics master’s program to meet the residency requirements of the Graduate Division.

TRANSFER CREDIT
Master’s students may request to transfer 6 units of required credit from an accredited non-UC campus, up to one-half of the quarter-units from another UC campus, or 12 units from UC Davis Extension to their graduate transcript. Only graduate and upper division coursework may be transferred; lower division coursework is not transferrable. For doctoral students, some work taken elsewhere may be used to satisfy certain degree requirements with the consent of the Graduate Advisor and the Dean of Graduate Studies.

FROM UNDERGRADUATE: Up to 6 units of graduate work (that is, only 200-level courses) taken by an undergraduate student may be credited toward their graduate degree program. This does not apply if units were used to satisfy any requirements for the bachelor’s degree.

RESIDENCE REQUIREMENTS
The minimum residence requirement at the University of California is three quarters for the Master’s degree, nine quarters for the degree of Juris Doctor, and six quarters for the degrees of Doctor of Philosophy and Doctor of Engineering, as is prescribed by UC Senate Regulations. Please note
that per our degree requirements students must be enrolled full-time in a minimum 12 units each quarter.

REPEAT COURSES AND INCOMPLETE GRADE ASSIGNMENT
Any graduate student may, with the consent of the graduate Advisor and the Dean of the Graduate Studies, repeat a course in which a grade of C, D, F, or Unsatisfactory was assigned, up to a maximum of nine units. Any repeated course, except for courses offered only on a S/U basis, must be taken for a letter grade.
The grade of Incomplete ("I") must be removed before the end of the third succeeding quarter of academic residence. In the event a student accumulates more than 8 units of Incomplete, the student shall be subject to disqualification.
A statistics graduate student will be prohibited from taking a qualifying examination if 8 units of "I" appear on the scholastic record or if any of the "I" grades were received for courses required for the master's or Ph.D. degrees.

MINIMUM GPA REQUIREMENT
Graduate students must at all times maintain a cumulative and per quarter GPA of 3.0 or higher to remain in good standing. They also need to make normal progress towards their degree. The sample study plans provided above serve as guidelines for normal progress.
FINANCIAL SUPPORT

Many doctoral students in good standing receive some form of financial aid. The department offers funding in the form of employment as a Teaching Assistant (TA), Graduate Student Researcher (GSR), Associate Instructor (AI), or Reader. To hold one of these appointments, students must be enrolled in at least 12 units and maintain a minimum GPA of 3.0.

Teaching Assistant (“TA”)
TAs are employed at either 25% and 50% time (10 to 20 hours per week), and currently (2018) receive a monthly salary of between $1217.25 and $2434.61. In addition, TAs receive remissions covering most of their in-state fees. TA Duties may include (among other assignments) discussion sessions, office hours, problem-solving, preparing handouts, preparing, setting up and holding computer lab sessions, grading exams and homework. Teaching assistants who have performed satisfactorily and who are making normal progress toward their degrees have preference for renewal. A teaching assistant who has not yet taken STA 390 must take it at the first available offering. All TAs are required to take the TA Orientation offered by UC Davis, per campus policy. International TAs must satisfy UC Davis requirements on English language. Teaching assistantships are governed by a union contract: (http://atyourservice.ucop.edu/employees/policies/systemwide_contracts/uaw/index.html)

Associate Instructor (“AI”)
AIs are in charge of instruction of record for the course, and for supervision of Teaching Assistants. An AI is employed at 50%. An AI currently (2018) receives a monthly salary of approximately $2550.78, and receives the same fee remissions as a TA.

Graduate Student Researcher (“GSR“)
GSRs are hired by a faculty member to conduct research. They are employed at either 25% or 49% time, and their monthly salary depends on how advanced they are in their degree. Those who have not yet advanced to PhD candidacy are appointed at Step IV, receiving between $1115.75 and $2186.87 per month during the academic year (in summer it is possible to work up to 100%). Students who have passed their PhD Qualifying Exam and advanced to candidacy are appointed at Step V, receiving between $1190 and $2332.40 per month. GSRs receive full remissions on their in-state fees and on their non-resident tuition. Students usually apply to a faculty member offering the research assistantship on an individual basis. It is possible to be a TA and GSR simultaneously (25% each).

Readers
Readers grade homework and may hold an appointment as a reader for a maximum of 19 hours a week. The current (2018) rate for graduate readers is
$16.75 per hour.

SCHOLARSHIPS AND FELLOWSHIPS

Awards are made as a mark of honor, primarily on the basis of scholarship and promise of outstanding academic and professional contribution. Application forms and supporting documents, including GRE scores and letters of recommendation, must be filed online by January 15.

Non-resident Supplemental Tuition Fellowships

US citizens, permanent residents, or immigrants, who are not legal residents of California are eligible for a nonresident tuition fellowship in their first year only. All non-resident students admitted to the Ph.D. program are considered. U.S. citizens must become California residents after one year.

Other Financial Aid

Other forms of financial assistance, such as grants, loans, work-study positions are available to graduate students. Contact the Graduate Financial Aid Services, 1100 Dutton Hall, [(530) 752-9246] for information.

GRADUATE FEES AND TUITION REMISSIONS, 2019-20

For the most up to date tuition and fee information, please see the UC Davis Finance & Business website: https://financeandbusiness.ucdavis.edu/student-resources/tuition-fees/graduate.

Eligibility and Remission Benefit information can be found on the Graduate Studies website: https://grad.ucdavis.edu/eligibility-remission-benefit
Department of Statistics Faculty

Ethan Anderes, Associate Professor
Ph.D. (University of Chicago)
4214 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~anderes/
ebanderes@ucdavis.edu

Alexander Aue, Professor
Ph.D. (University of Cologne)
4230 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~alexaue/
aaue@ucdavis.edu

Rahman Azari, Lecturer
Ph.D. (George Washington University)
4226 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~azari/
asazari@ucdavis.edu

Krishna Balasubramanian, Assistant Professor
Ph.D. (Georgia Institute of Technology)
https://sites.google.com/view/kriznakumar/
4232 Mathematical Sciences Bldg
kbala@ucdavis.edu

Prabir Burman, Professor
Ph.D. (University of California, Berkeley)
4103 Mathematical Sciences Bldg
pburman@ucdavis.edu

Hao Chen, Assistant Professor
Ph.D. (Stanford University)
4218 Mathematical Sciences bldg
http://anson.ucdavis.edu/~haochen/ hxchen@ucdavis.edu

Shizhe Chen Assistant Professor
Ph.D. (Univ. Washington)
http://www.chenshizhe.com/
athematical Sciences Bldg
szdchen@ucdavis.edu

Christiana M. Drake, Professor
Ph.D. (Univ. Washington, Seattle)
4101 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~drake/
cmdrake@ucdavis.edu

Fushing Hsieh, Professor
Ph.D. (Cornell University)
4238 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~fushing/
fhsieh@ucdavis.edu

Jiming Jiang, Professor
Ph.D. (University of California, Berkeley)
4228 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~jiang/
jimjiang@ucdavis.edu

Can Le, Assistant Professor
Ph.D. (University of Michigan)
4117 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~canle/
canle@ucdavis.edu

Thomas C.M. Lee, Professor
Ph.D. (Macquarie University and CSIRO Mathematical and Information Sciences, Sydney, Australia)
4220 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~tcmllee/index
tcmllee@ucdavis.edu

Xiaodong Li, Assistant Professor
Ph.D. (Stanford University)
4109 Mathematical Sciences Bldg
xdgli@ucdavis.edu

Miles Lopes, Assistant Professor
Ph.D. (University of California, Berkeley)
4105 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~melopes/
melopes@ucdavis.edu

Hans-Georg Müller, Distinguished Professor
Ph.D. (University of Ulm), M.D. (University of Heidelberg)
4236 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~mueller/
hgmueller@ucdavis.edu

Debashis Paul, Professor
Ph.D. (Stanford University)
4222 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~debasis/
debpaul@ucdavis.edu
Jie Peng, Professor
Ph.D. (Stanford University)
4216 Mathematical Sciences Bldg
http://www.stat.ucdavis.edu/~jie/
jiepeng@ucdavis.edu

Wolfgang Polonik, Professor
Ph.D. (University of Heidelberg)
4212 Mathematical Sciences
http://www.stat.ucdavis.edu/~polonik/
wpolonik@ucdavis.edu

Bala Rajaratnam, Associate Professor
Ph.D. (Cornell University)
brajaratnam@ucdavis.edu

James Sharpnack, Assistant Professor
Ph.D. (Carnegie Mellon University)
4107 Mathematical Sciences Bldg

Duncan Temple Lang, Professor
Ph.D. (University of California, Berkeley)
4210 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~duncan/
dtemplelang@ucdavis.edu

Jane-Ling Wang, Professor
Ph.D. (University of California, Berkeley)
4234 Mathematical Sciences Bldg
http://anson.ucdavis.edu/~wang/
janelwang@ucdavis.edu

Emeritus Faculty
Rudolph Beran
Ph.D. (Johns Hopkins University)
rberan@ucdavis.edu

P.K. Bhattacharya
Ph.D. (Calcutta University)
pkbhattacharya@ucdavis.edu

Alan P. Fenech
Ph.D. (Cornell University)
fenech@wald.ucdavis.edu

Yue-Pok Mack
Ph.D. (University of California, San Diego)
ypmack@ucdavis.edu

George G. Roussas
Ph.D. (University of California, Berkeley)
groussas@ucdavis.edu

Francisco J. Samaniego
Ph.D. (University of California, Los Angeles)
fjsamaniego@ucdavis.edu

Robert H. Shumway
Ph.D. (George Washington University)
rhshumway@ucdavis.edu

Alvin D. Wiggins

Ph.D. (University of California, Berkeley)
adwiggins@ucdavis.edu

Affiliated Graduate Program Faculty
Laurel Beckett, Professor
Ph.D. (Stanford University)
Department of Public Health Sciences
labeckett@ucdavis.edu

Colin Cameron, Professor
Ph.D. (Stanford University)
Department of Economics
accameron@ucdavis.edu

Óscar Jordà, Professor
Ph.D. (University of California, San Diego)
Department of Economics
ojorda@ucdavis.edu

David Rocke, Distinguished Professor Ph.D. (University of Illinois, Chicago)
Department of Public Health Sciences
dmrocke@ucdavis.edu

Naoki Saito, Professor
Ph.D. (Yale University)
Department of Mathematics
saito@math.ucdavis.edu

Chih-Ling Tsai, Distinguished Professor
Ph.D. (University of Minnesota)
Graduate School of Management
clttsai@ucdavis.edu

Department Teaching Staff non Graduate Program members

JoAnna Whitener, Lecturer
Ph.D. (Baylor University)
jcwhitener@ucdavis.edu
Program Chair: Alexander Aue

Executive Committee (elected)

| Alexander Aue (Chair) | Debashis Paul |

Graduate Advising Committee
New Ph.D. students should meet with Prof. Debashis Paul to discuss course plans. Master’s students should meet with Prof. Prabir Burman. If you require a signature for a form you please see the primary graduate Advisor. If unavailable, any of the other members of the advising committee is authorized to sign. The Graduate Advisors are:

<table>
<thead>
<tr>
<th>PhD Advising, including Awards</th>
<th>MS Advising</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jie Peng (Chair; PhD Advisor)</td>
<td>Chris Drake (MS Advisor)</td>
</tr>
<tr>
<td>Xiaodong Li</td>
<td>Mile Lopes</td>
</tr>
<tr>
<td>Hans-Georg Müller</td>
<td>James Sharpnack</td>
</tr>
<tr>
<td>Wolfgang Polonik</td>
<td>Jane-Ling Wang</td>
</tr>
</tbody>
</table>

Admissions Committee (including IDP)

<table>
<thead>
<tr>
<th>PhD Admissions</th>
<th>MS Admissions (including IDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jie Peng (Admissions Chair)</td>
<td>Jie Peng (Admissions Chair)</td>
</tr>
<tr>
<td>Hao Chen</td>
<td>Hao Chen</td>
</tr>
<tr>
<td>Can Le</td>
<td>Xiaodong Li</td>
</tr>
<tr>
<td>Jane-Ling Wang</td>
<td>James Sharpnack</td>
</tr>
<tr>
<td>Wolfgang Polonik</td>
<td></td>
</tr>
</tbody>
</table>

Examinations Committees

<table>
<thead>
<tr>
<th>Written PhD Pre-Qualifying Exam</th>
<th>Written MS Comprehensive Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hao Chen (232 section) Chair</td>
<td>Prabir Burman (Chair)</td>
</tr>
<tr>
<td>Jiming Jiang (232 section)</td>
<td>Mile Lopes</td>
</tr>
<tr>
<td>Debashis Paul (231 section)</td>
<td>Jie Peng</td>
</tr>
<tr>
<td>Wolfgang Polonik (231 section)</td>
<td>Jane-Ling Wang</td>
</tr>
<tr>
<td></td>
<td>Hans-Georg Müller</td>
</tr>
</tbody>
</table>

These are the committees most relevant to graduate students. For a full list of Graduate Program committees please visit the website:
DEPARTMENT OF STATISTICS STAFF

Daniel Chang
Grants and Contracts Manager
4118C, dlchang@ucdavis.edu

Jillian Hancock,
Master's Program Coordinator
4118D, jrhancock@ucdavis.edu

Nehad Ismail,
Systems Administrator
4206 MSB, nnismail@ucdavis.edu

Michael Jin,
Computing Resource Specialist
4202 MSB, micjin@ucdavis.edu

Kimberly McMullen,
Undergraduate Programs Coordinator
4118B MSB, kimcmullen@ucdavis.edu

Sarah Driver,
Graduate Programs Coordinator
4118E, sbrdriver@ucdavis.edu

Olga Rodriguez,
Accounting Assistant
4118, oirodriguez@ucdavis.edu

Pete Scully,
Management Services Officer
4115 MSB, pscully@ucdavis.edu

Mohammad Sahtout,
Senior Statistician
4113 MSB, mosahtout@ucdavis.edu

Department Chair:
Alexander Aue
4220 MSB, tcmlee@ucdavis.edu

Ph.D. Graduate Advisor:
Jie Peng
4214 MSB, ebanderes@ucdavis.edu

M.S. Graduate Advisor:
Chris Drake
4101MSB, cmdrake@ucdavis.edu

Statistics mailing address:
Department of Statistics
Math Sciences Building
399 Crocker Lane
University of California
One Shields Ave.
Davis, California 95616

Tel: (530) 752-2361
Fax: (530) 752-7099
A History of the Statistics Department
by Distinguished Professor Emeritus Francisco Samaniego

As in most universities in the U.S., UC Davis initially made the development of coursework in Statistics at Davis the province of the Department of Mathematics. The first Ph.D. level statistician on the Davis campus was Dr. George Baker, who joined the mathematics faculty in the 1930s. Baker was, by training, a mathematical statistician, but his career at Davis, spanning nearly 40 years, included a good deal of applied work, much of it supported by the UC Davis Agricultural Experiment Station. Baker was a prominent contributor to the Annals of Mathematical Statistics in its early years. He was among the first statisticians honored by election as Fellow of the Institute of Mathematical Statistics, publishing over one hundred published papers in theoretical and applied statistics and many contributions to collaborative work with faculty in the fields of plant science, agronomy, pomology and animal science.

Several mathematicians joined Baker in developing a Statistics curriculum. Most offerings were aimed at students in the applied sciences. Mathematicians Henry Alder and Edward Roessler were especially influential in developing an introductory course in statistics for the general campus. Their textbook for this course was used at Davis for many years and was adopted quite widely across the U.S., as there were rather few comparable books in the 1950s and 1960s when this book written and refined through multiple editions. In the 1960s and 1970s, this introductory course was offered as Mathematics 13 at UC Davis and was taken by approximately 3000 students per year. Prior to the formation of an independent unit in statistics, a number of other prominent statisticians joined the Davis mathematics faculty. Howard Weiner, an applied probabilist with a degree from Stanford, joined the math department in the 1960s and served in that department until his retirement. Peter John was a member of the mathematics faculty at Davis in the 1960s. In the 1970s, a small cadre of young statisticians joined the department, including Max Layard, George Duncan, John Moore, Francisco Samaniego, Alan Fenech, Cory Atwood, Ronald Glaser, Norman Matloff and Jessica Utts. John Van Ryzin joined the Mathematics Department in 1977, but left to take a position at the Rand Corporation at the end of that academic year. During his year at Davis, Van Ryzin authored a formal proposal for the establishment of an independent unit in statistics in response to the recommendations of a campus committee organized to study the need for such a unit at Davis.

In July, 1978, Francisco Samaniego, then an Associate Professor of Mathematics, was appointed as Faculty Assistant to the Vice Chancellor for Academic Affairs and charged with the task of coordinating matters dealing with the formation of a separate academic unit in Statistics. Discussions about the most appropriate organizational structure for the new unit had been going on for several years. In the end, it was decided that Statistics should be established as an Intercollegiate Division. Such units are generally larger than individual departments, often having several separate departments within them. The Intercollegiate Division of Statistics was formed as a unitary academic unit which would function as an ordinary department in most matters, but would be overseen by a “Work Group of Deans”, ensuring that the Division maintained ongoing ties and relationships to various schools and colleges. The Deans of Letters and Science, Agriculture, Medicine and Veterinary Medicine were asked to oversee the Division of Statistics, with Larry Andrews, Dean of Letters and Science, serving as the Chair of the Workgroup. Professor Samaniego completed the design of the new unit, composing proposals for the establishment of the M. S. and Ph. D. degrees in Statistics, a Graduate Group in Statistics and the Statistical Laboratory, the Division’s consulting arm. The Intercollegiate Division of Statistics officially came into existence on January 1, 1979. Professor Samaniego was appointed as Acting Associate Dean of the unit.
The first six months of operation of the unit was largely devoted to making preparations for the offering of a full curriculum in academic year 1979 - 1980. Key among the initial priorities of the unit was the recruitment of a senior-level statistician to join the unit as head and Associate Dean. A broadly-based search committee chaired by Professor Samaniego considered an impressive list of candidates and was fortunate to recruit Professor Julius Blum as Associate Dean, beginning July 1, 1979. Blum was a Berkeley Ph. D. from the early 50's with a strong research reputation in probability and statistics and with a successful experience as Chair of the department of mathematics and statistics at the University of New Mexico. Further, he had recently completed a tour of duty as a program director at the National Science Foundation. On paper, and in his interview at Davis, he seemed to be an ideal candidate. Professor Jack Kiefer, then at Berkeley, called several times in the course of the search and graciously offered to provide advice, as needed, on the recruitment effort. When asked for his opinion following our interview process, he said emphatically: “Blum is a winner! You can't do better than Julius Blum.”

Blum arrived in Davis in July of 1979. Besides taking over the general administration of the unit, he began the process of recruiting additional faculty. There were six faculty members at Davis who transferred to full-time positions in the Intercollege Division of Statistics: Fenech, Glaser, Matloff, Samaniego and Utts from the Mathematics Department and Alvin Wiggins from the School of Veterinary Medicine. Professor Wiggins was appointed Director of the Statistical Laboratory. Blum was a talented, extroverted, fair-minded academic who infused the unit with energy and activity. He led by example, maintaining an active research program of high quality, involving himself in many collaborative research projects and building consensus about the new unit’s direction. Arguably, his greatest contribution to the unit was the strong priority he gave to recruiting the best possible new members. In his first year, he chaired search committees that resulted in the recruitment of two outstanding senior scholars, P.K. Bhattacharya from the University of Arizona and Robert Shumway from George Washington University, to the Division of Statistics at Davis. Tragically and unexpectedly, Julius Blum suffered a massive heart attack and passed away in April of 1982. His colleagues from that day still miss the man. Stealing a line from the movie “Something's Gotta Give”, he was a man to love! Three of his colleagues – Samaniego, Bhattacharya and Shumway – served in succession as Acting Associate Dean following Blum’s death. The Julius Blum Award has been presented annually since 1983 to an outstanding Statistics graduate student.

Professor George Roussas joined the Division of Statistics in July, 1985, as Associate Dean and as Chair of the Graduate Group in Statistics. He served in these two capacities for 14 years – an era marked by dynamic leadership, well-considered growth and a general expansion of the unit’s reputation and influence both on the campus and beyond. In a study sponsored by the National Sciences and Engineering Council of Canada and disseminated in 1992, the UC Davis Statistics group ranked 14th among 300 Statistics institutes worldwide in terms of research productivity. In a follow-up study published in the Canadian Journal of Statistics in 2002, the UC Davis Statistics Department ranked 4th, among 202 Statistics institutes surveyed, in the category of published papers per capita in “the top 25” journals in the field. Highlights of Roussas's tenure as Associate Dean include the doubling of the size of the faculty and of the curriculum offered, the development of a biostatistics component to the Statistics graduate program and a whole-scale revamping of the graduate curriculum and qualifying examination process in Statistics. Professor Roussas was recognized by his peers for his myriad contributions to the statistics profession by the Festschrift “Asymptotics in Statistics and Probability: Papers in Honor of George G. Roussas” published in 2000 and by a workshop held in his honor in May, 2001. Roussas continues his teaching and research at Davis, serving as Distinguished Professor Emeritus of Statistics.
Recent history of Statistics includes changes in its organizational structure. It abandoned its designation as an Intercollege Division in 1999 and became a Department within the newly formed Division of Mathematical and Physical Sciences of the College of Letters and Sciences. The title of Associate Dean was replaced by the traditional title of chair, a position that would be filled on a rotating basis. Professor Jane-Ling Wang served as Department Chair from 1999 to 2003. She presided over the planning of the unit’s move to the new Mathematical Sciences Building, a move that was finally accomplished in 2005. During her tenure, the Graduate Group in Statistics was replaced by the departmental Graduate Program in Statistics, and the Graduate Group in Biostatistics was formed. The healthy coexistence of separate graduate degree programs in Statistics and Biostatistics in one department is a rarity, and Professor Wang’s planning and foresight contributed considerably to its success. Professor Hans-Georg Müller provided the principal leadership in this latter development, authoring the proposal for graduate degree programs in Biostatistics and serving generously and effectively as Chair of the Biostatistics Graduate Group from 2001 to 2007. Professor Rudolf Beran served as Department Chair from 2003 to 2007. The signal accomplishment of Professor Beran’s tenure was, without doubt, the recruitment of Peter Hall to the Davis faculty as a “target of excellence”. Professor Hall accepted a 25% appointment at Davis, beginning in 2005 and spends Spring Quarters (April – June) in Davis, teaching one course per year. The unit recruited five additional new faculty members during Professor Beran’s tenure (Paul, Peng, Pollard, Sen and Temple Lang) but also experienced three retirements (Fenech, Shumway and Mack) and, regrettably, two resignations (Johnson and Christianini) during this period. The Graduate Program in Statistics was reviewed during Professor Beran’s tenure as chair, and received very high marks on all counts. Professor Beran also planned for a seamless and relatively painless transition from Kerr Hall to the Department’s new home in the Mathematical Sciences Building.

Professor Wolfgang Polonik was appointed Department Chair in 2007 and oversaw more faculty recruitment in Alexander Aue, Ethan Anderes and Paul Baines as both the undergraduate and graduate programs expanded further. Professor Polonik also applied successfully for a prestigious NSF Research Training Grant for the department. Professor Hans-Georg Müller served as Chair between 2012 and 2015, overseeing further growth in our graduate programs as well as the recruitment of new faculty members Hao Chen, Cho-Jui Hsieh, Xiaodong Li, Miles Lopes, and James Sharpnack. In July 2015 Professor Thomas Lee was appointed the new Department Chair, and continues to oversee a period of exciting growth in the department.

SOME USEFUL LINKS

Office of Graduate Studies
(530) 752-0650
http://gradstudies.ucdavis.edu

Registrar’s Office
(530) 752-2973
http://registrar.ucdavis.edu/

Services for International Students and Scholars (SISS)
(530) 752-0864
http://siss.ucdavis.edu
The University of California, Davis
CODE OF ACADEMIC CONDUCT
Honesty, Fairness, Integrity

This Code of Academic Conduct exists to support high standards of behavior and to ensure fair evaluation of student learning. Students who violate the Code of Academic Conduct are subject to disciplinary sanctions that include censure, probation, suspension, deferred separation, or dismissal from the University of California. Unless specifically authorized by the instructor in writing, misconduct includes, but is not limited to the following:

§ Academic misconduct on exams or other coursework
 • Copying or attempting to copy from another student, allowing another student to copy, or collaborating with another student on an exam
 • Displaying or using any unauthorized material such as notes, cheat-sheets, or electronic devices
 • Looking at another student's exam
 • Not following an instructor's directions regarding an exam
 • Talking, texting or communicating during an exam
 • Altering assignments or exams for re-grading purposes
 • Bringing pre-written answers to an exam
 • Having another person take an exam for you, or taking an exam for another student
 • Theft of academic work
 • Unexcused exit and re-entry during an exam period

§ Plagiarism
 • Taking credit for any work created by another person; work includes, but is not limited to books, articles, experimental methodology or results, compositions, images, lectures, computer programs, or internet postings
 • Copying any work belonging to another person without indicating that the information is copied and properly citing the source of the work
 • Using another person's presentation of ideas without putting such work in your own words or form and giving proper citation
 • Creating false citations that do not correspond to the information you have used
 • Plagiarizing one's own work

§ Unauthorized collaboration
 • Working together on graded coursework without permission of the instructor
 • Working with another student beyond the limits set by the instructor
 • Providing or obtaining unauthorized assistance on graded coursework

§ Misuse of an instructor's course materials or the materials of others
 • Posting or sharing any course materials of an instructor without the explicit written permission of that instructor
 • Purchasing or copying assignments or solutions, to complete any portion of graded work, without the instructor's permission
 • Unauthorized use of another student's work

§ Lying or fraud
 • Giving false excuses to obtain exceptions for deadlines, to postpone an exam, or for other reasons
 • Forging signatures or submitting documents containing false information
 • Making false statements regarding attendance at class sessions, requests for late drops, incomplete grades, or other reasons

§ Intimidation or disruption
 • Pressuring an instructor or teaching assistant to regrade work, change a final grade, or obtain an exception such as changing the date of an exam, extending a deadline, or granting an incomplete grade
 • Refusing to leave an office when directed to do so
• Physically or verbally intimidating or threatening an instructor, teaching assistant or staff person, including yelling at them, invading personal space, or engaging in any form of harassment
• Repeatedly contacting or following an instructor, teaching assistant, or staff person when directed not to do so
• Misusing a classroom electronic forum by posting material unrelated to the course
• Interfering with an instructor’s or teaching assistant’s ability to teach a class, or interfering with other students’ participation in a class by interrupting, physically causing a disruption, or excessive talking

Upholding the UC Davis Code of Academic Conduct

Students, faculty, and University administration all have a role in maintaining an honest and secure learning environment at UC Davis.

§ The success of our Code of Academic Conduct depends largely on the degree that it is willingly supported by students.

Students:
• Are responsible to know what constitutes cheating. Ignorance is not an excuse.
• Are required to do their own work unless otherwise allowed by the instructor.
• Are encouraged to help prevent cheating by reminding others about this Code and hold each other accountable by reporting any form of suspected cheating to the University.
• Shall respect the copyright privileges of works produced by faculty, the University, and other copyright holders.
• Shall not threaten, intimidate, or pressure instructors or teaching assistants, or interfere with grading any coursework.
• Shall not disrupt classes or interfere with the teaching or learning environment.

§ Faculty members and instructors are responsible for teaching courses and evaluating student work, and are governed by University of California and UC Davis policies and regulations. Regulation 550 of the Davis Division of the Academic Senate addresses academic misconduct. Faculty and instructors:
• Will provide students with a course outline containing information about the content of the course, amount and kind of work expected, examination and grading procedures and notice of the Code of Academic Conduct.
• Should monitor examinations to help prevent academic misconduct.
• Shall report all suspected cases of cheating and other misconduct to the Office of Student Support and Judicial Affairs (http://ossja.ucdavis.edu/).

§ The University has delegated authority and responsibility to the Office of Student Support and Judicial Affairs (OSSJA) for the adjudication and resolution of academic misconduct cases. OSSJA maintains records of academic misconduct. The University:
• Shall educate faculty and students about the Code of Academic Conduct.
• Shall provide physical settings such as classrooms and labs for examinations that minimize opportunities for academic misconduct.
• Shall assist and train faculty and teaching assistants about how to prevent and address academic misconduct.

§ Submitting Reports and Judicial Procedures:
• The Code of Academic Conduct governs academic conduct at UC Davis.
• Faculty have sole authority, as granted by the Academic Senate, to evaluate a student’s academic performance and assign grades. If academic misconduct is admitted or established, instructors may assign a grade penalty no greater than “F” for the course in question. If a report is pending at the end of an academic term, instructors should assign a temporary grade of “Y” for the course until the report is resolved.
• A faculty/student panel, convened by OSSJA, shall conduct formal hearings to adjudicate contested cases of academic misconduct, unless the right to a formal hearing has been withdrawn. The right to a formal hearing may be withdrawn because of a prior finding of misconduct.
ACADEMIC CALENDAR

2019-20

Campus Dates

<table>
<thead>
<tr>
<th></th>
<th>Fall ’19</th>
<th>Winter ’20</th>
<th>Spring ’20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quarter begins</td>
<td>Sept 23</td>
<td>Jan 3</td>
<td>Mar 26</td>
</tr>
<tr>
<td>Instruction begins</td>
<td>Sept 25</td>
<td>Jan 6</td>
<td>Mar 30</td>
</tr>
<tr>
<td>Instruction ends</td>
<td>Dec 6</td>
<td>Mar 13</td>
<td>June 4</td>
</tr>
<tr>
<td>Quarter ends</td>
<td>Dec 13</td>
<td>Mar 20</td>
<td>June 4</td>
</tr>
<tr>
<td>10th Day of Instruction (10 day drop courses; PELP deadline)</td>
<td>Oct 8</td>
<td>Jan 17</td>
<td>Apr 10</td>
</tr>
<tr>
<td>12th Day of Instruction (wait list ends; last day to add without PTA)</td>
<td>Oct 10</td>
<td>Jan 22</td>
<td>Apr 14</td>
</tr>
<tr>
<td>20th Day of Instruction (20 day drop courses)</td>
<td>Oct 22</td>
<td>Feb 3</td>
<td>Apr 24</td>
</tr>
<tr>
<td>Holidays</td>
<td>Nov 11, 28-29, Dec 24-25, 31</td>
<td>Jan 1, 20, Feb 17</td>
<td>Mar 27, May 25</td>
</tr>
<tr>
<td>Diploma Date</td>
<td>Dec TBD</td>
<td>Mar TBD</td>
<td>June TBD</td>
</tr>
<tr>
<td>Graduate Commencement</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Statistics Department Dates

- **New Student Orientation**: September 2018
- **PhD Written Pre-Qualifying Exam**: March 25-28, 2019
- **MS Written Comprehensive Exam**: March 25-28, 2018
- **Department Spring Picnic**: June 2019

All dates subject to change

PhD Deadlines

<table>
<thead>
<tr>
<th>Degree List</th>
<th>File PhD Candidacy*</th>
<th>File PhD Thesis online</th>
<th>Final Date for MS Exam**</th>
</tr>
</thead>
<tbody>
<tr>
<td>May TBD</td>
<td>Aug TBD</td>
<td>Dec TBD</td>
<td></td>
</tr>
<tr>
<td>Sep TBD</td>
<td>Jan TBD</td>
<td>May TBD</td>
<td></td>
</tr>
<tr>
<td>Dec TBD</td>
<td>Oct TBD</td>
<td>Mar TBD</td>
<td></td>
</tr>
<tr>
<td>Mar TBD</td>
<td>Nov TBD</td>
<td>Apr TBD</td>
<td></td>
</tr>
</tbody>
</table>

*Candidacy filing dates are suggestions and not firm deadlines. PhD Thesis filing dates however are firm deadlines.

**Final date for MS Exam report to be submitted to Graduate Studies upon completion of coursework; the Statistics MS Exam is on a set date, in March 2019.
Please visit the department website:

http://www.stat.ucdavis.edu

The University of California does not discriminate on the basis of race, color, national origin, religion, sex, sexual orientation, handicap, age, veteran's status, medical condition, ancestry, or marital status.

The University of California is an affirmative action/equal opportunity employer. Call (530) 752-2071 for more information. Speech and hearing impaired persons may dial (530) 752-7320 (TDD)